

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

QUALITY ANALYSIS OF LOW-COST MULTI-BAND GNSS RECEIVERS AND ANTENNAS

Grzegorz Marut, Emilia Biczel

Institute of Geodesy and Geoinformatics, UPWr, Wrocław, Poland

02.02.2023, Satellite Methods in Geodesy and Cadastre, Brno, Czech Republic

MOTIVATION

STATUS OF GNSS MEASUREMENTS:

- well established tool
- widely used in geoscience applications
- provide centimeter and sub-millimeter accuracy for real-time and post-processing, respectively
- four global satellite systems

CHALLENGES:

- reducing the cost of using GNSS
- improving performance from low-cost devices
- building denser networks to study phenomena on a local scale^[1]

Source: Understanding Different Satellite Systems

FIELD OF STUDY

PLACE OF EXPERIMENT

USED ANTENNAS

USED DEVICES

METHODOLOGY

- Receiver: u-blox C099-F9P
- Antennas: 12 x low-costs and 2 x geodetic grade
- Observed systems: GPS, GLONASS, Galileo
- Calculated systems: GPS, GLONASS
- Software: GNSS-WARP, Bernese 5.2, Anubis Free 3.3
- Products: Final MGEX CODE
- Measurements techniques: Precise Point Positioning (PPP),
 Double-Differenced Positioning, Single Point Positioning
- Calculation interval: 30 sec / 15 min

[1] Springer Handbook of Global Navigation Satellite Systems. (2017). In P. J. G. Teunissen & O. Montenbruck (Eds.), *Springer Handbook of Global Navigation Satellite Systems*. Springer International Publishing. https://doi.org/10.1007/978-3-319-42928-1

Source: Springer Handbook of Global Navigation Satellite Systems^[1]

RESULTS – SIGNALS (1)

- Good satellite tracking on the first frequency
- Worse tracking ability of GPS and GLONASS satellites on the second frequency compared to Galileo
- TALL and TGCL antennas the weakest of the low-cost antennas
- Results comparable to geodetic grade antennas (excluding TALL and TGCL)

AMOUNT OF SIGNAL TRACKED COMPARED TO IGS WROC

	Cod	e/Phase 1st	freq.	Code/Phase 2nd freq.			
	G [%]	R [%]	E [%]	G [%]	R [%]	E[%]	
JAVD	99.6	99.8	99.5	72.4	86.4	99.4	
LEIC	99.4	99.7	99.5	72.6	86.4	99.4	
AS3C _U	99.6	99.8	99.7	72.4	86.3	99.3	
AS3C _B	99.6	99.9	99.7	72.3	86.3	99.2	
$AS2S_{U}$	99.4	99.7	99.6	72.5	86.4	99.2	
AS2S _B	99.5	99.8	99.3	72.5	86.4	99.4	
TGCLL	98.7	89.6	95.5	64.4	81.8	86.8	
TGCL _R	99.6	94.7	98.0	67.4	82.6	94.8	
TALL	99.2	96.4	99.5	71.5	86.1	90.8	
TALL _R	99.2	99.1	99.1	72.1	86.0	98.3	
TGMA _U	99.8	99.9	99.7	72.2	86.2	98.3	
TGMA _B	99.8	99.9	99.7	72.1	86.0	97.9	
UBLX _U	99.5	99.9	99.6	72.6	86.3	99.2	
UBLX _B	99.7	99.9	99.7	72.4	86.2	96.1	

RESULTS - SNR (1)

- Consistent signal-to-noise ratio
 between pairs of antennas (excluding
 GLONASS S1C for TALL antennas)
- TGCL antennas again weaker than other antennas
- Low-cost antennas comparable to geodetic grade antennas (excluding TALL and TGCL)
- In the case of GLONASS and Galileo
 S7Q, antennas connected to the lowcost receiver are not much worse
 than IGS WROC station (excluding
 TALL and TGCL)

RESULTS - SNR (2)

- TGCL antenna outperforms other antennas
- Weaker results were also obtained for patch antennas TGMA and TALL antennas
- AS2S and AS3C antennas achieved results comparable to geodetic grade antennas
- All antennas connected to low-cost receivers acquire worse signals coming from lower elevations compared to WROC stations

RESULTS - MUTLIPATH

- TGCL antenna is characterised by the greatest
 influence of multipath effect reaching even more
 than 2 m regardless of elevation and azimuth
 angle
- JAVD and LEIC geodetic class antennas are characterised by greater multipath effects than AS3C and AS2S antennas
- For all antennas, the second first frequency is affected by a higher multipath effect compared to the second frequency

RESULTS - GNSS-WARP WITHOUT PCOS

- Calculations were performed with null model for all antennas
- Used antennas have high
 repeatability both, horizontally
 and vertically (excluding TGCL
 and TALL)
- The vertical offsets are noticeably larger than horizontal reaching up to almost 30 cm (UBLX_B)!
- Incompatibility between used UBLX antennas

METHODOLOGY FOR PCO'S DETERMINATION

- Technique: Baseline positioning
- Products: CODE MGEX
- Troposphere: VMF-1
- The procedure is performed separately for each system and each frequency recorded by the receivers

		Reference		Estimation		Differences	
		JAVD	LEIC	JAVD	LEIC	JAVD	LEIC
			Up [$\Delta Up [mm]$			
G –	L1	39,27	58,32	44,8	68,3	-5,6	-10,0
	L2	40,08	55,54	56,8	74,8	-16,7	-19,3
R –	L1	39,48	58,32	41,6	69,2	-2,1	-10,9
	L2	37,82	55,54	54,3	72,0	-16,5	-16,4

RESULTS OF PCO'S DETERMINATION

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

RESULTS-GNSS-WARP WITH PCOS

- An individual offset for each antenna was used
- Receivers have improved horizontal position to within about 1 cm
- Most of antennas have improved vertical position to close zero
- Minimal improvement for TGMA antennas was observed

CONCLUSIONS

- Signals tracked by low-cost receivers are mostly compatible with professional receivers
- Most of the antennas obtained similar SNR's levels to geodetic grade antennas
- Low-cost antennas have similar multipath effects compared to antennas used in geodesy
- A check of the reference coordinate network should be carried out to exclude the transmission of determination errors
- Determination error of used method should be computed using a geodetic grade receiver
- Change the calculation of PCO from arithmetic mean to weighted mean
- The use of the computed offsets has significantly improved the coordinate determination for most of used antennas

QUALITY ANALYSIS OF LOW-COST MULTI-BAND GNSS RECEIVERS AND ANTENNAS

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Thank you for your attention!

Grzegorz Marut Institute of Geodesy and Geoinformatics, UPWr, Wrocław, Poland grzegorz.marut@upwr.edu.pl

02.02.2023, Satellite Methods in Geodesy and Cadastre, Brno, Czech Republic