

Quality of multi-GNSS precise point positioning using stochastic modeling of the clock parameter

Marcin Mikoś, Kamil Kazmierski, Krzysztof Sośnica

Institute of Geodesy and Geoinformatics, UPWr, Wroclaw, Poland

IGS Network / Types of clocks

- Not all stations track multi-GNSS:
 - GPS (**G**)
 - GLONASS (R)
 - Galileo (E)
 - BeiDou (C)
- Different types of clocks:
 - Internal crystal oscillator (XO)
 - Atomic clocks:
 - Rubidium (Rb)
 - Cesium (Cs)
 - Hydrogen Maser (HM)

Source: https://igs.org/network/

Station IGS selection / Methodology

- Different continents
- Systems: G, R, E, C
- Different receivers and antennas
- Clocks: XO, Rb, Cs, HM
- Final MGEX CODE products
- Measurement technique: Precise point positioning (PPP)
- Type of solutions: Monthly kinematic solutions (in continuous processing)
- Calculation interval: 30s

STABILITY OF CLOCK PARAMETER

Raw / Fast Fourier Transform (FFT) - clock parameters

- Clock stability characteristics depends on the type of the clock
- Least noise results on BRUX station with HM clock
- The stability of the C system is lower than for other systems (see BRUX)
- Less stable clocks clearly indicate 24h,
 12h, and 8h signals based on the FFT analysis
- Results for the system C show more characteristic signals
- Similar values achieved by all systems for less stable clocks (AREG) and similar results for G, R, and E for more stable stations (BRUX, DLF1)

Differentiation of adjacent clock epochs - short-term stability

aanaanaanaanaanaanaanaa,; <u>%, %, Me %,</u>						
8	STD [m]	G	R	E	С	
3	AREG	0.031	0.031	0.030	0.049	
	BRUX	0.008	0.009	0.008	0.028	
	ZIM2	0.040	0.040	0.040	0.059	

<u> </u>	<u> </u>	######################################			
IQR [m]	G	R	E	С	
AREG	0.036	0.036	0.036	0.037	
BRUX	0.007	0.007	0.007	0.010	
ZIM2	0.044	0.044	0.044	0.046	

Modified Allan deviation (MDEV) - long-term stability for G system

- AREG (Rb), BRUX (HM), YEL2 (HM), and ZIM2 (XO)
- BRUX station clock achieves the highest stability
- More stable clocks contain mostly white noise
- Less stable clocks also contain other types of noise (such as flicker noise and random walk)

Period: 01.04.2022 - 30.04.2022

DETERMINATION OF THE CLOCK PARAMETERS

Determination of the clock parameters – PTBB (HM)

- Independent clock parameters
- For each
 measurement epoch,
 four clock parameters
 are calculated
 (G, E, R, C)

	N	Е	U
STD [m]	0.013	0.014	0.032
IQR [m]	0.010	0.011	0.025

- Clock parameter from G system with Inter-System Biases (ISB) to other systems (R, E, C)
- One parameter is calculated for each epoch and the ISB for the other systems is determined once per day

	N	E	U
STD [m]	0.027	0.037	0.057
IQR [m]	0.011	0.012	0.026

Which solution is better?

STOCHASTIC MODELING OF THE CLOCK PARAMETER

Stochastic modeling of the clock parameter

stochastic modeling = random walk (RandWlk) + reset of receiver clock parameter at the boundary of the day

RandWlk =
$$\frac{\text{values}}{\sqrt{t}}$$

- t interval between observations, files RINEX (30s)
- values estimated value

Values [mm]: 10 - 250

11/14

Random walk is the process of determining the probable position of a point subject to random motion.

The **clock** components for each system are **reseted** at the **boundary of the day**. This is done by increasing the values at the corresponding epochs on the diagonal elements in the covariance matrix.

Stochastic modeling of the clock parameter

Period: 01.05.2021 - 31.05.2021

kinematic solution, multi-GNSS (G,R,E,C)

M₀SE **PTBB WTZS** WT77 ZIM₂ $0.030 \, m$ $0.030 \, m$ Best Raw Raw Raw solution clock clock clock $\sqrt{30} s$ $\sqrt{30} s$ 0.032 0.036 IQR [m] 0.041 0.023 0.026

Stochastic modeling superimposed on the clock parameter is effective for the most stable clocks (HM).

Conclusion

- Analysis of the stability of the GNSS clocks allows for deriving stochastic parameters for clock modeling – there are large differences between HM, Cs, Rb, and XO clocks
- The clock parameters can be determined independently for each system or for one system along with the inter-system biases (ISB) for the other systems
- Stochastic modeling superimposed on the clock parameter is effective for the most stable clocks (HM) improving the stability of the solution

In the future

- Further analysis of the determination of the clock parameters independently for each system and for one system together with the ISB for the other systems
- Further study of determining stochastic modeling for the clock parameters to optimize station coordinate repeatability

Thank you for your attention!

Further reading:

Mikoś, M., Kazmierski, K., & Sośnica, K. (2023). Characteristics of the IGS receiver clock performance from multi-GNSS PPP solutions. GPS Solutions, 27(1), 1-13. DOI: https://doi.org/10.1007/s10291-023-01394-9

Marcin Mikoś

Institute of Geodesy and Geoinformatics, UPWr marcin.mikos@upwr.edu.pl