

Družicové metody v geodézii a katastru 3.2.2022

Crustal density and global gravitational field estimation on the Moon from GRAIL and LOLA satellite data

Šprlák M.⁽¹⁾, Han S.-C.⁽²⁾, Featherstone W.E.⁽³⁾, Novák P.(1), Pitoňák M.(1)

(2) – School of Engineering, Faculty of Engineering and Built Environment, University of Newcastle, Callaghan, NSW, Australia

(3) – School of Earth and Planetary Sciences, Curtin University of Technology, Perth, WA, Australia

1. Motivation:

- GRAIL (Gravity Recovery and Interior Laboratory),
- Mapping the gravitational field of the Moon in 2012,
- Altitude: ~10-90 km above the lunar surface,
- Maximum spherical harmonic degree/order (d/o): 1500,
- Spatial resolution of the gravitational field: ~3.6 km.

- ARC Discovery Project (2017 2019): "Lunar crustal structure from high-res gravity, topography, and seismic data",
- Two geodetic/geophysical tasks important for many applications in geodesy, geophysics, and planetary sciences solved:
 - A) Determination of crustal density (inverse problem),
 - B) Calculation of global gravitational fields inferred by crustal masses (forward problem).
- Priority: application of independent mathematical methods.

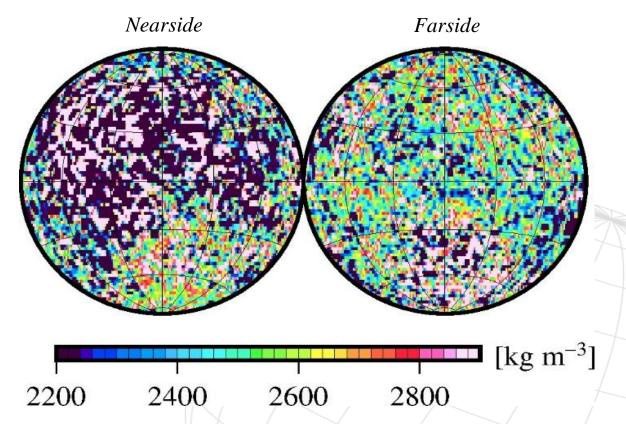
2. Determination of crustal density:

$$\overline{C}_{n,m} = \frac{1}{R^n M(2n+1)} \int_{\Omega} \int_{r} \varrho(r,\Omega) \, \overline{Y}_{n,m}(\Omega) \, r^{n+2} \, dr \, d\Omega$$

GRAIL-derived GGFM

LOLA topography

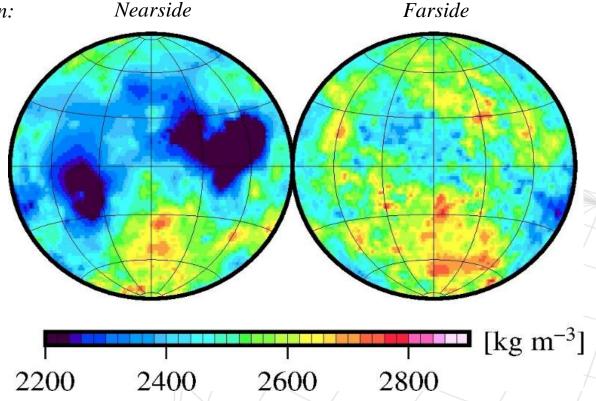
Unknown


- Mathematical model: global, spherical, and linear,
- Horizontal density variations parametrised by surface spherical harmonics,
- Crustal density estimates: 1) constant, 2) horizontally variable, and 3) spatially variable.

Horizontally variable crustal density

Least-squares solution:

$$\hat{\mathbf{x}} = \left(\mathbf{A}^{\mathrm{T}} \, \mathbf{A}\right)^{-1} \, \mathbf{A}^{\mathrm{T}} \, \hat{\mathbf{I}}$$

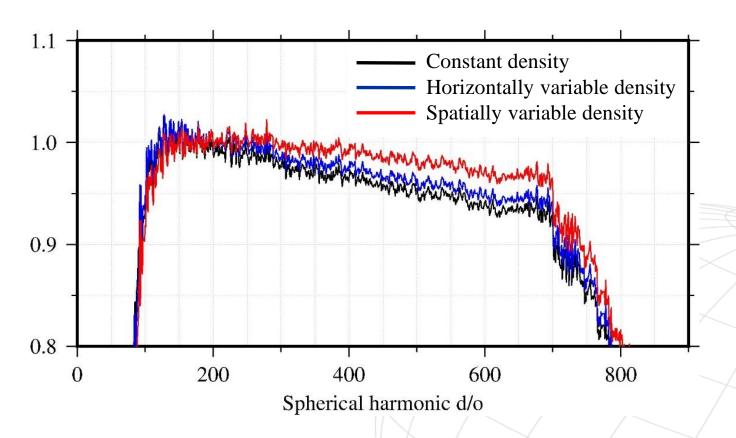


Horizontally variable crustal density

Regularised least-squares solution:

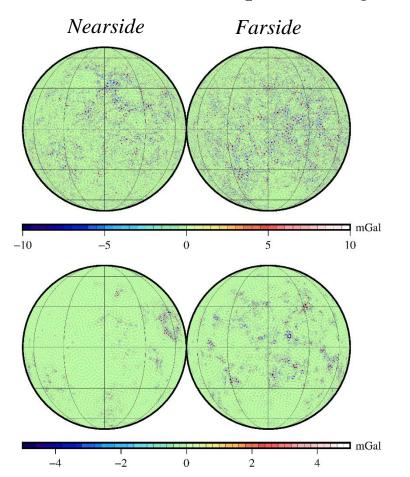
$$\hat{\mathbf{x}} = \left(\mathbf{A}^{\mathrm{T}} \, \mathbf{A} + \mathbf{K}\right)^{-1} \mathbf{A}^{\mathrm{T}} \, \hat{\mathbf{I}}$$

3. Global gravitational field models:


$$\overline{C_{n,m}} = \frac{1}{R^n M(2n+1)} \int_{\Omega} \int_{r} \varrho(r,\Omega) \, \overline{Y}_{n,m}(\Omega) \, r^{n+2} \, dr \, d\Omega$$

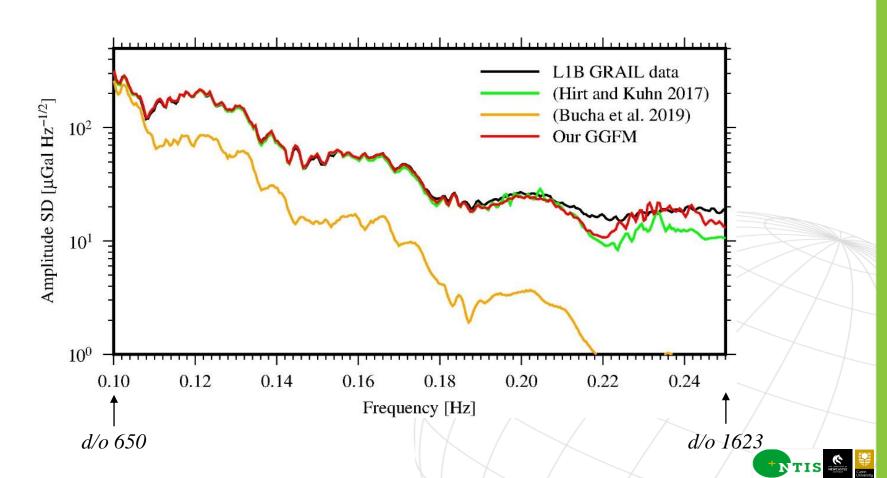
Unknown

LOLA topography Our estimates


- Forward calculation of 3 GGFMs by the Rigorous Forward Modelling method (Šprlák et al. 2018),
- Maximum spherical harmonic d/o 2519 (spatial resolution ~2.2 km),
- Extensive assessment of the 3 GGFMs in spectral and spatial domains.

Admittance (our forward GGFMs vs. GL1500E)

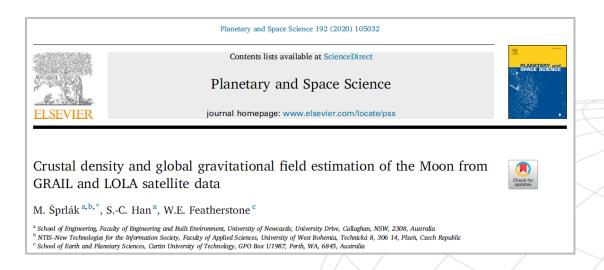
Maps of (Bouguer) radial gravitations


GL1500E minus constant density

Spatially variable density vs. constant density

Along-track analysis (recent forward GGFMs vs. L1B GRAIL) geomatika

4. Conclusions:


- Employment of Newton's integral in the spectral domain and solution of two geodetic/geophysical tasks,
- Formulation of a global, spherical, and linear mathematical model for crustal density estimation,
- Determination of constant, horizontally variable, and spatially variable crustal densities,
- Calculation of 3 forward GGFMs and their extensive testing in spatial and spectral domains,
- The estimated models will find applications in geodesy, geophysics, planetary sciences, navigation, etc.

Published article:

Šprlák M, Han S-C, Featherstone W (2020) Crustal density and global gravitational field estimation of the Moon from GRAIL and LOLA satellite data. Planetary and Space Science 192:105032. https://doi.org/10.1016/j.pss.2020.105032.

Thank you for your attention!!!

References:

Bucha B, Hirt C, Kuhn M (2019) Divergence-free spherical harmonic gravity field modelling based on the Runge-Krarup theorem: a case study for the Moon. Journal of Geodesy 93(4), 489-513. https://doi.org/10.1007/s00190-018-1177-4.

Hirt C, Kuhn M (2017) Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography - A case study for the Moon. Journal of Geophysical Research – Planets 122(8):1727-1746. https://doi.org/10.1002/2017JE005298.

Šprlák M, Han S-C, Featherstone W (2018) Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution (~2 km) gravity fields of the Moon. Journal of Geodesy 92(8):847-862. https://doi.org/10.1007/s00190-017-1098-7.

