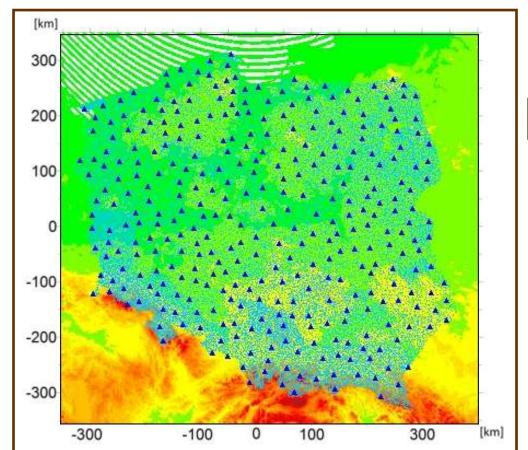


Wrocław University of Environmental and Life Sciences

COMPARISON OF THE ACCURACY OF TWO HIGH RESOLUTION GLOBAL GEOPOTENTIAL MODELS: EGM08 AND EIGEN-6C4. CASE STUDY AT THE AREA OF POLAND

Marek Trojanowicz, Olgierd Jamroz, Edward Osada


Wrocław University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics

THE ANALYSED GLOBAL GRAVITY MODELS

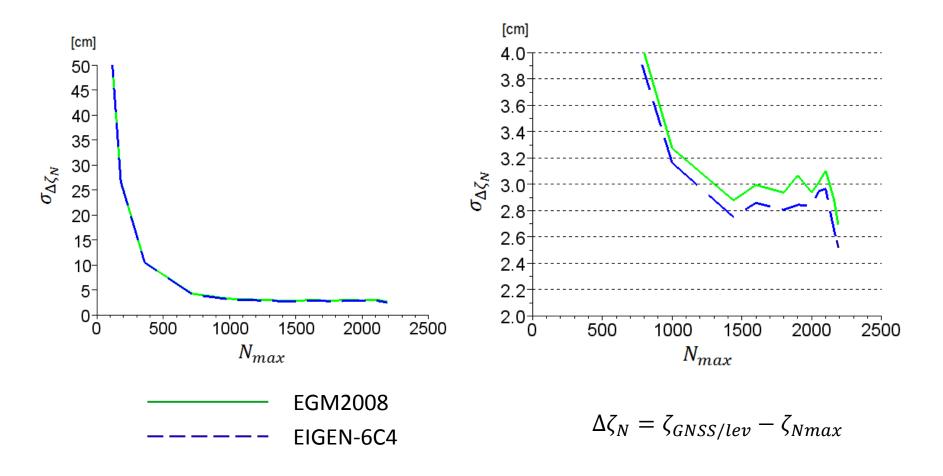
Model name	Year of development	Degree Order	Semi-major axis $oldsymbol{a}$ GM	Used data
EGM2008	2008	2190 2159	6378137.00 m $3.986004418 \times 10^{14} \frac{\text{m}^3}{\text{s}^2}$	ITG-GRACE03S (180/180) 5' × 5' free-air gravity anomalies grid (global grid formed from terestrial, altimetry-derived and airbornr gravity data)
EIGEN-6C4	2014	2190 2190	6378136.46 m $3.986004415 \times 10^{14} \frac{\text{m}^3}{\text{s}^2}$	LAGEOS (30) GRACE (130) GOCE SGG Txx + Tyy + Tzz + Txz (235) 2' × 2' free-air gravity anomalies grid (altrimetry over the oceans and EGM2008 over continents)

On the continents for wavelengths beyond spherical harmonics degree 235, EIGEN-6C4 is basically a reconstruction of EGM2008

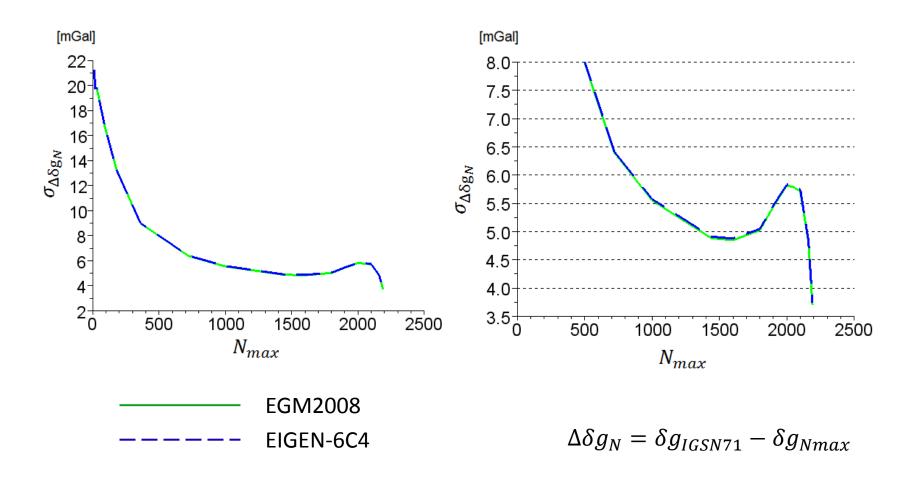
USED TEST DATA

33330 Gravity points referred to the International Gravity Standardization Network 1971 (IGSN71)

HIGH ACCURACY GNSS/LEVELLING POINTS (estimated error of height anomaly $\pm 1cm$)

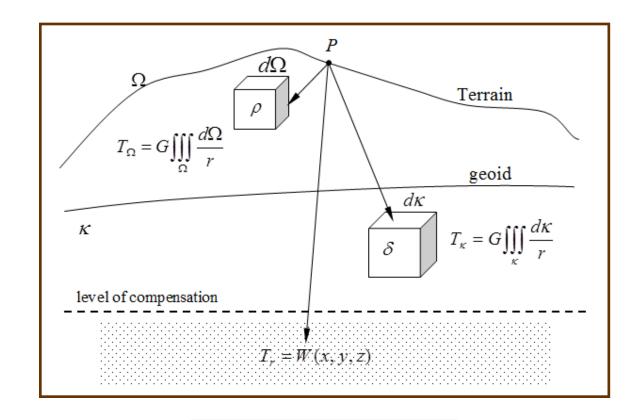

▲ Selected points of networks EUREF-POL,POLREF, EUVN, ASG-EUPOS-EA - Adjustment 2011, (241 points provided by CODGiK) short name of the group: ASG 2011

BASIC ACCURACY PARAMETERS OF THE ANALYSED MODELS


	EGM2008	EIGEN-6C4
$\max(\Delta\zeta)$ [cm]	9.8	4.1
$\min(\Delta\zeta)$ [cm]	-17.4	-17.8
mean($\Delta \zeta$) [cm]	-3.9	-4.5
$\sigma_{\Delta\zeta}$ [cm]	2.7	2.5
$\max(\Delta \delta g)$ [mGal]	64.4	63.8
$\min(\Delta \delta g)$ [mGal]	-20.4	-20.8
$\operatorname{mean}(\Delta \delta g)$ [mGal]	13.4	13.1
$\sigma_{\Delta\delta g}$ [mGal]	3.7	3.7

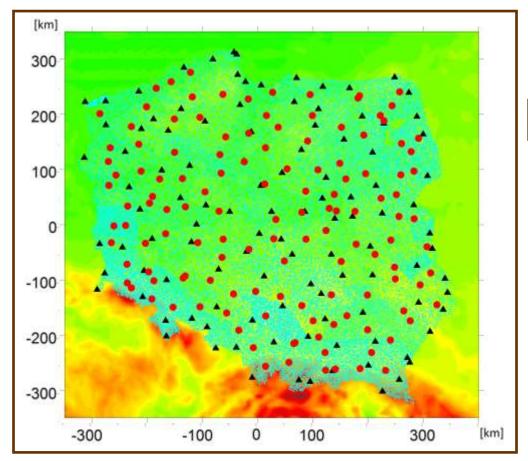
$$\Delta \zeta = \zeta_{GNSS/lev} - \zeta_{GM}$$

$$\Delta \delta g = \delta g_{MEASURED} - \delta g_{GM}$$


VALUES OF THE STANDARD DEVIATION $(\sigma_{\Delta \varsigma_N})$ AS FUNCTION OF N_{max} VALUES

VALUES OF THE STANDARD DEVIATION $(\sigma_{\Delta\delta g_N})$ AS FUNCTION OF N_{max} VALUES

THE GGI METHOD OF LOCAL QUASIGEOID MODELLING

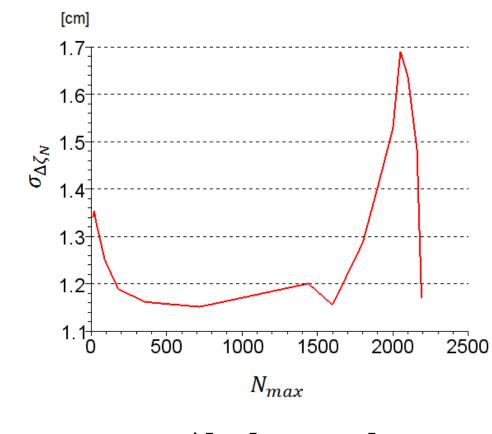

$$T_P = T_r + T_\Omega + T_\kappa$$

GGI method - local
quasigeoid modelling
method which uses
Geophysical Gravity data
Inversion technique

THE INPUT DATA

- Digital Terrain Model
- The Moho depth model
- Gravity data
- GNSS/levelling data

DATA USED FOR QUASIGEOID MODELLING BY GGI METHOD

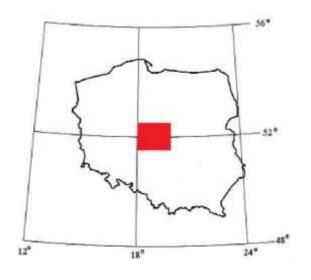

- ▲ GNSS/Levelling data points
- GNSS/Levelling test points

BASIC ACCURACY PARAMETERS OF QUASIGEOID MODELS CALCULATED BY GGI METHOD WITH THE USE EGM2008 AND EIGEN-6C4 GLOBAL MODELS

	EGM2008	EIGEN-6C4
Max($\Delta \zeta$) [cm]	3.9	3.9
Min($\Delta \zeta$) [cm]	-3.0	-2.9
stdev($\Delta \zeta$) [cm]	1.17	1.17

$$\Delta \zeta = \zeta_{GNSS/lev} - \zeta_{GGI}$$

VALUES OF THE STANDARD DEVIATION OF DIFFERATIONS $\Delta \zeta = \zeta_{GNSS/lev} - \zeta_{GGI}$ THE ζ_{GGI} VELUES CALCULATED WITH THE USE OF TRUNCATED EGM2008

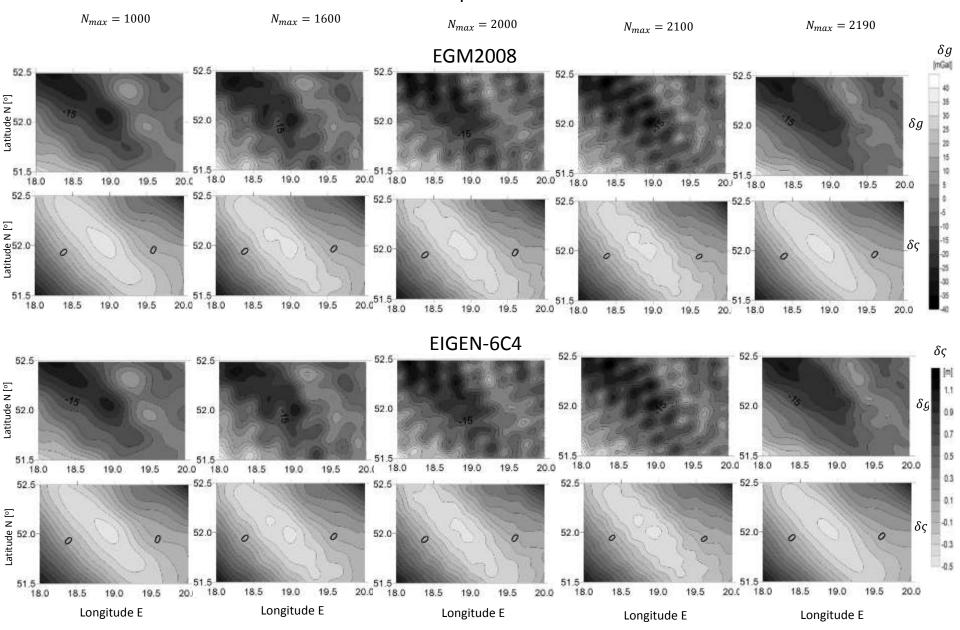


$$\Delta \zeta = \zeta_{GNSS/lev} - \zeta_{GGI}$$

DETAILED COURSE OF THE ANALYSED GLOBAL MODELS

For a small part of the central Poland $(51.5^o \le \varphi \le 52.5^o, 18^o \le \lambda \le 20^o)$, dense grid $(\Delta \varphi = 0.01^o, \Delta \lambda = 0.02^o)$ of the values $\zeta_{N_{max}}$ and $\delta g_{N_{max}}$ were determined. Because the changes in height anomalies $(\zeta_{N_{max}})$ were very small in relation to their values, a linear trend: $t_{N_{max}}(\varphi,\lambda) = a_0 + a_1\varphi + a_2\lambda$ for each set of $\zeta_{N_{max}}$ were estimated by least square method.

Subsequently residual height anomalies $\delta \zeta_{N_{max}} = \zeta_{N_{max}} - t_{N_{max}}$ were determined.


Dense grid of values $\zeta_{N_{max}}$, $\delta g_{N_{max}}$

Range of the grid: $51.5^o \le \varphi \le 52.5^o$, $18^o \le \lambda \le 20^o$

Grid resolution: $\Delta \varphi = 0.01^o$, $\Delta \lambda = 0.02^o$

Truncation: $N_{max} \in \{1000, 1600, 2000, 2100, 2190\}$

Linear tred removed: $\delta \zeta_{N_{max}} = \zeta_{N_{max}} - t_{N_{max}}$ $t_{N_{max}}(\varphi, \lambda) = a_0 + a_1 \varphi + a_2 \lambda$ Contour maps of gravity disturbances $\delta g_{N_{max}}$ and residuals height anomalies $\delta \zeta_{N_{max}}$ determined for different N_{max} values from EGM08 (top) and EIGEN-6C4 (bottom) for the central part of Poland

CONCLUSIONS

- Both tested models are very similar.
- The basic accuracy parameters of gravity disturbances are the same for both models ($\sigma_{\Delta\delta a}=\pm 3.7$ mGal).
- The basic accuracy parameters of height anomalies $(\sigma_{\Delta\zeta})$ are respectively:

+2.7 cm for EGM2008

 ± 2.5 cm for EIGEN-6C4.

EIGEN-6C4 model if slightly more accurate (at the level of 8%)

• It was also noted an "unexpected behaviour" of both models when truncated models was studied. As a result of this, one can see a significant decrease in the accuracy of gravity disturbances and height anomalies of both models in the range of N_{max} about 2000-2100.

This indicates the need of using in geoid or quasigeoid modelling all coefficients of both models.

Wrocław University of Environmental and Life Sciences

Thank you for your attention